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Introduction

An icosahedral material is a regular three-dimensional array of icosahedra held together
by a repeating pattern of flexible interconnecting bands. Each interconnecting band
attaches to exactly two icosahedra and
each icosahedron has up to 12 bands
attached to it, depending on its
position within the material. For
interior icosahedra with 12 attached
bands, this restrains motions in both
directions for all three Cartesian
coordinate axes. The approach to
understanding the motions of an
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icosahedral material that I will follow ..
in this document is to assume that the Figure 1: An icosahedral fabric

icosahedra are rigid bodies and apply

Newtonian physics to describe their motions. I will begin by considering the motions of
an icosahedron in the material in response to changes in the positions of its attached
interconnecting elements and any forces applied to it. Once I have determined the
equations that describe these motions, it will then be possible to describe the motions of
the entire material by considering interconnected arrays of icosahedra whose individual
motions alter the positions of the ends of the interconnecting elements that are attached to
their neighbors. The resulting mathematical model will allow investigation of the
behaviors of a material in static or dynamic contexts. Solving the equations of the model,
which means constructing approximate solutions on a computer, will be easier in the
static case but may require significant computational power and skill in both cases.

For the purposes of constructing a tractable mathematical model, I will assume that an
icosahedron is a rigid shell of material between two concentric icosahedral surfaces with
constant density o and uniform thickness 7, as measured, for example, at the center of a
face. So I am ignoring any additional structure in the interiors of the icosahedra, either
assuming that any such structures have too little mass to be important or that the mass of
any interior bracing is also icosahedrally distributed.

In general, an icosahedron within an icosahedral material may experience the following
forces

> the force of gravity,
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> other body forces such as electromagnetic interactions due to a charge
distribution within the shell,

> forces on any exterior surfaces of the form F(& 7,t), where & and 7 are
coordinates of points on the surface and ¢ is the time,

> forces due to the motions of the interconnecting elements attached to the
icosahedron.

Surface forces include externally applied forces and possibly forces generated when
icosahedra collide. If the faces of the icosahedra are frictionless, then only the
components of surface forces on the exteriors of icosahedra that are normal to the faces
will influence the icosahedra. If, however, the faces exhibit friction, then tangential
components will also have effects. The last two forces will usually change over time.
The force of gravity will be assumed to remain constant and may or may not be important
in a given situation.

Interconnecting elements could be represented as hinges, linear springs with or without a
failure point, or elastic bands that attach to points on the faces, edges, or vertices of the
icosahedra. In hopes of realistically representing the interconnecting elements in the
simplest way possible, I will assume that the interconnecting elements are linear springs
that exert forces along the lines connecting the points where their ends attach to
icosahedra and that the masses of the elements are small enough to be neglected.
Suppose that /; and I, are icosahedra that are attached by an interconnecting element at
points r; and r,, where ry lies on I, and r, lies on I,. Let D be the natural length of the
element and & be its spring constant. Then, in accordance with Newton's third law and
Hooke's law, the force that the element exerts will be

(ry-ry)

— onl,
F12:k<‘r1_r2‘_D) ‘rl_rz‘ 1)

(ry-r,) on ]

renf

(This isn't quite right. The force that an interconnecting element exerts also acts to
restore its angles of attachment and a particular orientation of the icosahedra it connects
relative to each other. It doesn't just act to restore the length of the element. This effect
depends on whether a portion of either icosahedron lies between the connection points.)
It might also be useful to allow the interconnecting elements to have different stiffnesses
depending on whether they are stretched beyond their natural length or compressed
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shorter than their natural length. In this case,
k, if ‘rl—r2‘>D
k, if ‘rl—r2‘<D

Furthermore, it's possible to specify that the interconnecting element breaks if stretched

k= 2)

too far. In this situation,
F\, = 0foralle>t, if [ —r,| =L, ate=r, while|r,-r,| <L, forall 1 <t,, @)
where L,> D is the length at which the interconnecting element breaks under extension

and I} is the time of breakage. This description neglects any change in the properties of
the element that might occur near the breaking point and neglects any recoil that might
occur afterwards. An analogous condition may be imposed if the element breaks when
compressed too far. Notice that, under the above description and consistent with
Newton's third law, the force that a connection exerts on the second icosahedron is
simply the opposite of the force that it exerts on the first icosahedron.

Theory of Elasticity References: Feynman, Leighton, and Sands V. II, pp. 38-1 to 39-13
and pp. 31-6 to 31-12; Borisenko and Tarapov, pp. 66-8 and 70-2; Strang pp. 155-81;
Fetter and Walecka pp. 459-79; and Arfken pp. 140-50.

Equations of Motion for a Rigid Body
The motions of a rigid body are completely specified by Newton's second law
d
F=2 - g , (4)
dt
which states that the force F is the rate of change of the (linear) momentum p, and its
rotational counterpart
dL
N=—0
dt
which states that the torque N is the rate of change of the angular momentum L. Here m
is the mass of the body and a is its acceleration. Any quantities written in a bold font or,
alternatively, with arrows over them are vector quantities.

In analyzing the motions of a body, it's worthwhile to consider three different coordinate
systems, as shown in Figure 1. In this discussion, I will adopt the notation of Fetter and
Walecka. (For information related to the following analysis, see Fetter and Walecka pp.
134-9 and pp. 31-9; Fowles pp.117-22 and Chapters 7 and 8; and Bourg Chapters 1, 14,
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Figure 2: Three coordinate frames

and 15.) I will first introduce a coordinate system associated with the perspective of an
inertial observer, typically located outside of the body, who is watching the body move.
This coordinate system is a right-handed Cartesian coordinate system with coordinates

(i},
le3),

where i=1,2,3. I will call this frame the “primary inertial reference frame” or simply

and corresponding unit basis vectors

“primary frame.” This is the coordinate system from which we'd like to determine the
body's motions. I define the vector R to be the position of the center of mass of the body
in the primary frame. The center of mass of an icosahedron lies at the center of the
icosahedron. So, in this case, R points from the origin of the primary frame to the center
of the icosahedron.

The other two coordinate systems are associated with the body itself and are used to
simplify the analysis. The first of these is a coordinate system that has the same unit
basis vectors as the primary frame with its origin located at the center of mass of the
body. I will call this frame the center-of-mass frame. Its coordinates will be
5",
where
¢

x"=x!+R fori=1,2,3. (6)
The third coordinate system is a right-handed Cartesian coordinate system with its origin
at the center of mass of the body that is attached to the body and fixed so that it moves as

the body moves. I will call this frame the body frame and define

[xi]
e

to be its coordinates and
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to be the corresponding unit basis vectors, where again i=1,2,3. The position r of an
arbitrary point in the body as seen from the primary frame may be written as

r=R+r’,
where r'is the position of the point relative to the center of mass at R. For each point in
the body, the position r' relative to the center of mass is fixed in the body frame and only
depends on the particular point chosen.

The center of mass moves like a point mass, having the mass M of the entire body, that

experiences the net force F ;applied to the body. Therefore, the position of the center

tota
of mass R satisfies Newton's second law

MR = Ftotal = bOd)’F(r,t), (7)
where the applied force F may depend on the positions of points on the body and on the
time 7. In general, the sum will contain volume, area, and line integrals of distributed

forces as well as any point forces acting on the body.

The angular momentum L of the body is given by the equation

L=RxX(MR)+L', (8
where L' is the angular momentum of the body about the center of mass. The rotational
analog of Newton's second law allows us to calculate how L’ changes in response to the
applied forces. It implies that

dL' dL' ,
dt primary dt cm
where N ,,,,,is the net torque. The angular momentum L' may be expressed in terms of
the moment of inertia tensor / and the angular velocity W as

L'=Iw (10
so that Equation (9) may be rewritten as

-

d - Ind _ '
T+ (@X10) = 2ye, T XF(r 1), ()

This equation determines the angular velocity of the body (0 as a function of time. The
components of the moment of inertia tensor are constant in any particular body frame and
are given by

1,=[ p(P)(6,P-P-xx)dV, (12)
fori, j=1,2,3, where p is the density of the body, 5,-j is the Kronecker delta, and the

integration ranges over all points P in the body, where [X i]:[P € i] are the components of
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P in the chosen body frame. (See Feynmann, Leighton, and Sands V. II, pp. 31-6 to
31-8; Fetter and Walecka pp. 134-7; and Fowles pp. 217-9.) Notice that the moment of
inertia tensor is symmetric, which means that its determination only requires the
evaluation of 6 of these integrals rather than all 9.

Given specified primary and body frames, Equations (7) and (9) provide the equations of
motion for the body

MR - ZbodvF’
d

Elw + (wxXlw) = Zbod}yr XF,

where F=R+r'. These equations are usually coupled since the force usually depends on

(13)

the position of the body. Aside from these equations, it is also necessary to specify the
initial conditions

R(O)ZRO,
R(0)=R,, (4
0l0)= i,

where R 0 R 0» and (BO are constant vectors, as well as the forces

F=F(rt) (15)
that the body will experience. In addition, the motions of the body may be constrained in
some way. Any such constraints must be consistent with the initial conditions. System
(13) with the initial conditions given in System (14), possibly some constraints, and
specified forces provide 6 scalar differential equations that determine R and  and
completely determine the motions of the body.

When working with these equations, it is important to be careful to express vector
components in the appropriate coordinate systems. In any single equation, the
components of all terms must be expressed in the same coordinates when solving the
equation. The equation for the position R of the center of mass is best solved in the
primary frame and the equation for the angular velocity @ is best solved in the body
frame. Therefore, it is important to be able to express the angular velocity in the center-
of-mass frame and the torques in the body frame. Translating back and forth between the
primary and center-of-mass coordinate systems is a straightforward matter of adding or
subtracting R to or from the position. But the transformation between the body and

center-of-mass coordinates is complicated and time-dependent, and it is necessary to
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solve an additional system of differential equations to determine it.

To find this coordinate transformation, consider the unit basis vectors for the body frame

{éi} . These vectors may be expressed in the center-of-mass frame as
3

3
ét) =) (éi-é(;)é(;:; Hel, (16)

J=1

where 1=1,2,3 and
=ere; for i,j=1,2,3. (17
If {wi} are the components of the angular velocity ¢ in the body frame, then the angular

velocity in the center-of-mass frame is
3 3

3
W(t)=) weée=> wY uijé(}. (18)
j=1

i=1 i=1
Since the unit basis vectors for the body frame do not change in the body frame,
dé
dt

for all i. This equation provides 9 differential equations that determine the coefficients

= wXe,, (19)

cm

Hj fori, ] =1,2,3 and describe the rotation of the body frame in the center of mass frame

given the initial positions of the body frame unit vectors in the center-of-mass frame
3
A _ A0 .
ei(())—z; u,(0)e; for i=1,2,3. (20)
=

Since these equations contain the angular velocity, they are coupled with the equations of
motion and must be solved simultaneously with the previous equations. This approach
requires solving 15 scalar differential equations to determine the motions of a rigid body
and, in particular, of each icosahedron.

Rather than using the coefficients [l;; to specify the rotation of the body coordinate
system, it is possible to describe rotations using mathematical entities called quaternions,
which can be thought of as a generalization of complex numbers. (See Kuipers, Bourg
pp- 227-9, Behnke et al pp. 467-77, Penrose pp. 198-208, and the Wikipedia and
Wolfram MathWorld entries pertaining to quaternions.) A rotation of angle 6 about an
axis that points in the direction of the unit vector u is represented by the unit quaternion

+sin|—|(u,i+u, j+usk). Q1)

2 2 2 2

In the center of mass coordinate frame, the quaternion that represents the rotation of the

cos|—|,sin|—|u| = cos

q:
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Figure 3: An icosahedron and its body frame

body frame satisfies

d—q = lwq , (22)
dt 2
where the angular velocity is written as the “pure” quaternion
w=0,d. (23)
In the body frame, ¢ satisfies the equation
dq l‘I w, (24)
dt 2

where @ is written in the body frame instead. The equations are different since
quaternions do not commute under multiplication. The solution to either equation must
satisfy the initial condition

q(0)=q,, ©5)
where ¢, is a constant quaternion expressed in the appropriate coordinate system. If a
point with initial position I '0 in the body has been rotated according to a quaternion ¢,
then its new position is

r_ ' %

r=qr 4%, (26)
where ¢* is the conjugate
q*=9y=9,i-q,j=q:k @7

of g. Using quaternions reduces the number of equations required for determining the
coordinate transformation from 9 to 4, which reduces the number of equations required

for determining the motions of a rigid body and of an icosahedron, in particular, from 15
to 10.
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Mathematical Representation of Icosahedral Shells

An icosahedron is conveniently represented in a right-handed Cartesian coordinate
system that has its origin at the center of the icosahedron and has axes that pass through
the centers of three perpendicular pairs of edges. (See the Wikipedia and Wolfram
MathWorld references related to the icosahedron.) For icosahedra, I define this to be the
body coordinate system that I described above. Another way of looking at this is that the
axes of the body coordinate system are the mid-lines of three perpendicular golden
rectangles that define the icosahedron, as depicted in Figure 3.

An icosahedron with edges of length 2a has vertices of the form
(0,+a,+Ta),(+ta,*7a,0),(x7a,0,*+a)

in this coordinate system, where T is the golden ratio = (1 -I-\/g)/Z ~1.618033989. (See

the Wikipedia and Wolfram MathWorld entries regarding the icosahedron and the

Wikipedia entries regarding the golden ratio and golden rectangles.) The vertices may be

categorized according to their z-components, as follows.

Top vertices: (0,—a,Ta),(0,a,7a)

Second highest vertices: (—Ta,0,a),(Ta,0,a)

Third highest vertices: (—a,—7a,0),(—a,ta,0),(a,—1a,0),(a,ta,0)
Fourth highest vertices: (—Ta,0,—a),(Ta,0,—a)

Bottom vertices: (0,—a,—Ta),(0,a,—Ta)

Nk D=

The faces may be identified by their vertices and may also be categorized according to
their z-components. Furthermore, it is useful to number the faces. Therefore, I may
somewhat arbitrarily number the faces as follows

Top faces:

1. {(0,—a,7a),(0,a,7a),(-T1a,0,a)],
2. [(0,—a,7a),(0,a,7a),(ta,0,a)],

Second highest faces:

3. {(0,—a,Ta), ( 1a,0,a),(—a,—7a,0)},
4. {(0,—a,7a),(—a,-7a,0),(a,—1a,0)],
5. [(0,—a, Ta , a,—Ta,O),(Ta,O,a)},
6. [(0,a,ta),(-T1a,0,a),(—a,ta,0)],
7. {(0,a,7a),(-a,7a,0),(a,ta,0)],
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8. [(0,a,7a),(a,7a,0),(1a,0,a)],

Third highest faces:

9. {(-71a,0,a),(-a,-7a,0),(-7a,0,—a)},
10. {(-Ta, Oa (—a,7a,0),(-7a,0,—a)l,
11. {(ta,0,a),(a,-7a,0),(ta,0,—a)},

12. {(Ta,O,a),(a,Ta,O),(Ta,O,—a)},

Fourth highest faces:
13. {(0,—a,-Ta),(-1a,0,—a),(-a,—7a,0)],

( :
14. [(0,—a,-Ta),(-a,-Ta, O) (a,—Ta,0)],
15. {(0,- a,—Ta),( -Ta, O Ta 0,—a)},
16. [(Oa -1a),(-1a,0,—a),(—a,7a,0)},
17. {(0,a,—-7a),(-a,ta,0), (a,Ta,O)],
18. {(0,a ),(a,T ) (1a,0,—a)},

Bottom faces:

19. {(0,—a,-7a),(0,a,—Ta),(-7a,0,—a)},
20. [(0,a,—7a),(0,—a,—Ta),(ta,0,—a)l.

A face with vertices vy, v,, and v; is the set of points
(V1445 (v,=, )+ (v5=9,) [ 0A, A1 (28)
Here, the parameters A, and A; are coordinates on the plane spanned by the vectors
W=V, =V, WiV, (29)

with origin at

Wi=Y{. (30)
The coordinate A, is the coordinate in the direction of the vector w, and the coordinate A;
is the coordinate in the direction of the vector ws. A third coordinate A, specifies

distance in the w; direction. The coordinates of the body frame x;, x,, and x; are related to

the coordinates A;, A,, and A; via the linear transformation

Xy A R
x =g = wowywilla,| = AN @y
X3 A,

where the columns of the transformation matrix A are the vectors wy, w,, and ws. As
defined, the vectors w,, w,, and wj are linearly independent, which means that the inverse
transformation
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A= A'x 32

exists.

For the purposes of the model and for calculating the physical properties of an
icosahedral shell, it is important to understand how to integrate over the volume of the
shell. Integrating over the entire shell is most easily accomplished by integrating over
each part of the shell that corresponds to a face and adding the results. Following this
procedure, integrating over the shell entails performing 20 integrals, each one pertaining
to one of the 20 faces.

The portion of an icosahedral shell that corresponds to a face is a frustum of the
triangular pyramid formed by the vertices of the outer face and the center of the shell, as
shown in Figure 3. Let vy, v,, and v; be the vertices of the outer face and suppose that the
length of the edges of the outer face is 2a and the length of the edges of the inner face is
2b. Since the vertices of the inner face lie in the directions of vy, v,, and v; from the
center of the shell, it is possible to use the coordinates A, A,, and A; that pertain to the
outer surface to integrate over the frustum. At the outer face, ?\12 | and, at the inner face,
A=bla . On any intermediate surface corresponding to a fixed value of A 1, A, runs from
1 y p g
0to A; and A; runs from 0 to A;—A, . The element of volume in these coordinates is
T
Wy
- T
dV =det W, d}\ldA2dA3, (33)
T
W
T . . . .
where the components of w; form the ith row in the matrix and the vertices vy, v, and v;

are labeled so that w;, w,, and w; form a right-handed triad. (See Gellert et al p. 466,
Fulks pp. 454-6, Hildebrand pp. 306-9, and Arfken pp. 86-8.) The right-handedness
insures that the determinant and, hence, the volume element is positive. Putting all of this

together, the integral of a function f (Xl, Xy, X3) over the volume of a face with exterior

vertices vy, ¥,, and v; is given by
T
I pd pA A, Wi
Lol e a0 (A A0, A, 3 (A, Ay, A Ddet]y T d Ay d Ay d A, s

T
Ws
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Exterior Face
v
3

1 ~ Interior Face

Center

Figure 4: One face of an icosahedral shell

It is also useful to understand some properties of the exterior faces of icosahedra and how
to integrate over them since this will be needed when calculating the effects of surface
forces. It is convenient to use the parameters Aj, A,, and A; to describe the points on the
exterior faces. Consider the exterior face with vertices vy, v,, and v;. On the face, the
parameter A, has a fixed value of 1 and the parameters A, and A; range over the set of
values that satisfies

0<A,+A<1. (35
The unit normal to this face is

ox  0x
oA, 0A, (36)

f=——,
VEG-F®

where
3 W, —W W, —W
w=Ywé foriz0 oo
i i© T oA TWorTWhp oA W™ Wiy (37)
j=1 2 3
Wysm™Wis Wi3™Wys
and

EZ@x_@x, F:(?x.ax’ Gzﬁx_ﬁx.

Due to the simple forms of the partial derivatives, the unit normal Vectorfl is a constant

(38)
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vector and E, F, and G are constants over the entire face. This means that many of these
quantities can be calculated once at the beginning of a numerical computation and stored
for later use. The plane spanned by v,, and v; and containing the point v, is the tangent

plane for every point on the face. And the element of area on the face in terms of the

dS=VEG-F* d\,d\,. (39)
(See Gellert et al pp. 565-7, Fulks pp. 429-35, and Struik pp. 55-64.) So the integral of a

function f (X Xy X 3) over the exterior surface of a face with vertices vy, v,, and v; is

parameters A, and A; is

given by
1 pl-a,
JoJ, F (=200 A, A0), 2, (1 =2,=40, A, Ay), 2, (1=2,-A4, 4, 4,)

VEG-F* d)dA,.

(40)

Rather than describing the icosahedra by specifying the lengths of the outer and inner
edges, it is probably more convenient for the current purposes to specify the length of the
outer edges and the thickness of a face as measured, for example, in the center of the
face. For an icosahedral shell of thickness 7" where the length of the outer edges is 2a and
the length of the inner edges is 2b,

b = a- !

e
3

where T is the golden ratio = <1+\/§ )/ 2 . This formula makes it easy to convert back and

forth between the two different ways of describing the icosahedra. The inner half edge
length b must be greater than 0 and less than a to make physical sense or, equivalently,
the thickness 7 must be less than the radius of the inscribed circle and greater than 0, i.e.

O<T<a\/§+'r.

Physical Properties of Icosahedral Shells

Volume
The volume of an icosahedral shell that has outer edges of length 2a and inner edges of
length 2b is

{5

1+

: @-b. @)

V=10
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This is the volume of a solid icosahedron with edge length 2a minus the volume of a
solid icosahedron with edge length 2b.

Center of Mass

By symmetry, the center of mass lies at the center of the body frame at (0,0,0), as the
equations of motion derived above require.

Principal Axes and Moment of Inertia Tensor

The moment of inertia tensor of an icosahedral shell with outer edge length 2a and inner
edge length 2b in the given body frame is

A0 0
I =0 A 0|, 43)
0 0 A
where
A =4 %Jrﬁ pla’=b|. (44)

Since the inertia tensor is diagonal, the given body coordinate axes are principal axes for
the shell. (See Fowles pp. 230-2.) Furthermore, since all three diagonal components are
equal, any Cartesian axes with the center of mass as their center will be principal axes.
This is due to the symmetry of the shell and means that the resistance to rotation is the
same around any axes that pass through the center of the shell.

The simple closed-form expression for the moment of inertia tensor for icosahedral shells
is the primary motivation for using shells rather than a more general structure to represent
icosahedra in the model. In general, evaluating the tensor requires the evaluation of a
large number of volume integrals. However, since the inertia tensor is constant in the
body coordinate frame, it only needs to be determined once for any given mass
distribution. This could take place during initialization at the beginning of a simulation
or exactly once outside of any simulation.

Despite the simple form of the inertia tensor for icosahedral shells, calculating it was
rather complicated. It required the evaluation of 120 volume integrals - 6 for each face
of the icosahedron. I used Maple for this purpose, checking the Maple calculations by
performing the integrations over one of the faces by hand and integrating to find some
known quantities that are calculated using similar integrals, namely the coordinates of the
center of mass and the volume. Altogether, this required evaluating 200 integrals, which
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resulted in approximately 50 pages of Maple calculations. The Maple code is included in
an appendix together with a summation of the output. (There is probably a simpler way
to do this calculation. It is probably possible to evaluate the 6 integrations corresponding
to one face and then use some physical principle to apply the results to the other faces.)

Equations of Motion for Icosahedral Materials

As described above, icosahedral materials are comprised of arrangements of icosahedra
in space. Flexible bands connect the icosahedra and restrain their motions in all three
spatial directions, tying the icosahedra together. Whatever the overall shape of a piece of
material, the interconnecting bands generally join the icosahedra in regular patterns called
“weaves”. The bulk properties of a material will depend upon the weave and the
magnitudes and directions of application of any externally applied forces.

Each icosahedron in a material will move according to its equations of motion and a
system of differential equations describing the rotation of its body reference frame
relative to its center-of-mass frame

MR =Y

icosahedron
d - o
—I® + (oX[®) = ), r'xF,
dl’ icosahedron (45)
4, wXe. or dq lw
—_— = e . — = y
dt cm l dt 2 q

where @ is the pure quaternion corresponding to the angular velocity vector w, subject
to the initial conditions

R(0)=R,,
R(0)=R,,
0(0)= a,, (46)

3
é10)=2 i 0)E; or g (0)=g,,
and under the influence of the exjternally applied and internally generated forces
F=F(rt). 47
Suppose that there are N icosahedra in the material. For the k" icosahedron, let R, be the
position of the center of mass, I'’, be the position from the center of mass to a point
where a force is applied, ® , be the angular velocity, @, be the pure quaternion

associated with the angular velocity, €, be the i" unit basis vector for the body frame,
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and ¢, be the quaternion specifying the rotation of the body frame relative to the center

of mass frame. Then the equations of motion for the elements of the material are

MR, = Z F,,
icosahedronk

d - - - _ '
Elwk T (kaIwk) - Zicosahedronkr kXFk’
(ﬂ = w,Xe., or % = 1w q

kN ik R T
dt |, dt 2

with initial conditions

and where

F =F(r,t)
represents the forces externally and internally applied to icosahedron k. The forces and
moments in a static configuration will satisfy the equations

0= F,,

icosahedronk

0= Zicosahedronkr 'kX Fk’ (48)
fork=1,2,--- N,

which simply state that the resultants of the forces and moments on the icosahedra are 0.
In general, this is a coupled, nonlinear system of equations. Notice that the same
equations pertain to any system of N rigid bodies. They describe the motions of an
icosahedral material, in particular, when the pattern of connections and the connection
force specify the internally generated forces, when [ is the inertia tensor for an
icosahedron, and when the resultants are calculated specifically for icosahedra.

Most typically, the initial configuration of an icosahedral material, which the initial
conditions embody, is formed from the weave used to join the icosahedra with all of the

interconnecting elements resting at their natural lengths. But this will not be true if the
material is pre-stressed in some way.

In addition to the equations and initial conditions, there may be equality constraints that
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specify the positions, velocities, orientations, angular velocities, or combinations thereof
for some of the icosahedra or possibly the positions of some interconnecting elements as
functions of time. Some of these constraints may amount to boundary conditions
imposed on the system. If constraints pertain to the positions of interconnecting
elements, which are not explicitly represented in the model, then they operate by
affecting the forces on the icosahedra attached to those connectors. When specifying
such constraints, it is important to make sure that they do not contradict other conditions
imposed on the system and that they remain consistent with the solution of the equations
over time.

Aside from the equations and constraints described above, there are also constraints
corresponding to the fact that solid icosahedral shells cannot interpenetrate. These are
inequality constraints that must be taken into consideration in both static and dynamic
calculations. As with the previous constraints, these must be consistent with the other
conditions that pertain to the system and with the solutions of the equations. Unlike the
previous constraints, they are complicated and difficult to formulate explicitly. In any
simulation, they embody the task of detecting collisions. In the presence of these
constraints, the determination of an equilibrium configuration of the system becomes a
problem of minimizing the magnitudes of the force and moment resultants subject to all
applicable constraints rather than a matter of solving the system of nonlinear equilibrium
equations. A collision detection algorithm will define the feasible region corresponding
to the collision constraints. If forces or moments persist after minimization, then the
structure of the material must be capable of sustaining the calculated configuration for it
to be physically realistic. In dynamic simulations, it is also necessary to specify how
icosahedra behave when they collide. Specifying how icosahedra respond in a collision
generally requires adding additional forces to any pairs of colliding icosahedra.

The issues related to the constraints described above also apply to any system of N rigid
bodies. They specialize to the case of an icosahedral material when the particular bodies,
forces, constraints, and responses are defined.

In the dynamic case, the overall system of equations that describes motions within the
material is a system of 10N (or 15N) ordinary differential equations together with the
initial conditions, any constraints on individual icosahedra or connectors, and the
collision constraints and responses. External forces may include the force of gravity,
electromagnetic forces, applied compressions or extensions, or the forces of an impact.
Internally generated forces result from the actions of interconnecting elements and
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possibly collisions between icosahedra. The dependence of forces on the position of
icosahedra, in general, and the forces that interconnecting bands generate, in particular,
which may, for example, take the form

(rz_r1)
o
(rl_rz)

=

onl,
Flzzk(‘rl_rz‘_D) ' (49)

onI2

couple the equations of motion of all of the icosahedra together, making it necessary to
solve the entire 10 (or 15) N system of ODEs simultaneously. Similarly, the system that
determines an equilibrium configuration consists of 10 (or 15) N nonlinear equations that
must be solved simultaneously or 10 (or 15) N coupled, nonlinear quantities that must be
minimized simultaneously under the given constraints.

Weaves

In what follows, I will assume that the connectors attach at the edges of the icosahedra.
There are currently three different weaves under consideration: the orthogonal, the bias,
and the radial. The radial weave is constructed using curved connectors that do not
conform to my assumptions regarding how connection forces act. Therefore, I won't
consider it further here. The orthogonal and bias weaves are actually identical except that
they are rotations of each other relative to the primary reference frame or to the exterior
boundaries of the material. See Figures 4 and 7, which show an icosahedron with all 12
possible connections oriented according to the orthogonal and bias weaves, respectively.
(Early analysis and testing showed that orthogonal weave fabrics are unsuitable for
building structures. However, ...) Although the orthogonal orientation has been found to
not be of much practical use, it is easier to analyze than the bias orientation and most
results concerning the orthogonal orientation may be translated into results concerning
the bias orientation. Therefore, I will explore the orthogonal weave in detail below.

The Orthogonal Weave

In the orthogonal weave, all of the icosahedra are oriented identically with respect the
primary reference frame, with a pair of opposite edges pointing directly up and directly
down. For an individual icosahedron, the connectors attach at the 6 edges that intersect
the circumscribing cube that contains the top and bottom edges. Each of these edges may
have up to two connectors attached, for a total of up to 12 connections per icosahedron,
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depending on the location of the icosahedron in the material. If present, the two
connectors run in roughly opposite directions from the edge where they attach.
Connectors that attach to edges on opposite faces of the cube run along roughly parallel
lines whereas connectors that attach to edges on adjacent faces of the cube run roughly
perpendicular to each other. The two icosahedra that a connector joins lie on opposite
sides of the connector. This creates spaces between the icosahedron and any other
icosahedra in the directions of the connectors. Icosahedra at corners, edges, and sides of
a material attach to the material via less than a full complement of 12 connectors whereas
interior elements utilize all 12 potential connectors.

Figure 4: An icosahedron and the 12 icosahedra that

connect to it in the orthogonal weave

Edge connections are conveniently thought of in terms of connections between the cubes
that circumscribe the icosahedra and contain the 6 edges where the connectors attach.
Let L be the length of the connectors, w be the width of the circumscribing cube, and 6 be
the angle between a connector and the circumscribing cube, where positive values of 6
refer to situations where the connectors lie entirely outside of the circumscribing cube
and negative values of O refer to situations where the ends of the connectors lie within the
circumscribing cubes. Then B
w=27a=(1+V5)a (50)

and, since the connectors meet the circumscribing cubes in the same manner in all
directions, L, w, and Sin@ are related by the quadratic equation

2 L’sin®0+ 2w Lsin0—(L*—w?)=0. (51)
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Therefore,

—w+ V2 L*—w?

sino= , (52)
2L
where
Lz\/i—w.707106781w,
2
or
sin@ + coso
L=[———|w (53)
C0s20

TT TT
since 4 <O0,n=<0< 1 L>0,w=>0,and L=w when 0=0, where 0 . is the

(negative) angle between the circumscribing cube and a face containing an edge on the
cube, i.e.

-1

0 = —arctan

nmin

~—0.364863828 rad = -20.90515745°. (54)

<
Figure 5 shows the connector length as a function of connection angle, where the blue
short-dashed line on the left hand side denotes 6 . and the red long-dashed line on the

right hand side is the asymptote at © = 45° . The connector length L increases

™
monotonically over the half-open interval 0, < 6 < 4 taking on its minimum length

L ~0.774596669w

™
There is no maximum length and L =0 as 0 —— .

at0 =20 4

min *
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Length vs Angle of Attachment
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Figure 5: Connector length as a function of connection angle

In the body frame of any particular icosahedron in a fabric woven in the orthogonal
weave, the centers of the icosahedra lie at

2i+ (|j| + |k|mod 2)mod 2
J » (55)
k

for integers i, j, and k, where the chosen icosahedron has indices i = j = k = 0 and mod

c(i,j,k)=(w+ Lsin0)

2 denotes arithmetic or reduction modulo 2. (See the corresponding Wolfram
MathWorld entry or Behnke et al, pp. 174-6 for a definition of modular arithmetic.)
Arithmetic modulo 2 can be implemented very efficiently on a typical computer using bit
operations rather than division. This rule provides a specific numbering of the icosahedra
in the fabric. The index k£ numbers the levels, which occupy planes perpendicular to the
z-axis. Within a given level, the index j numbers the columns, which run parallel to the
x-axis, and the index i numbers the icosahedra within each column. Since i, j, and k
correspond to steps in the coordinate directions, I will call them “coordinate” indices.
Notice, however, that the index i does not number the rows in the rule above, i.e. the
centers of icosahedra in different columns labeled with the same value of i may not have
the same y-component. The centers of icosahedra in neighboring columns with the same
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index i do not have the same x-component but those in the next nearest neighboring
columns do.

Since the centers of the icosahedra are symmetrically positioned with respect to all 3
coordinate directions, rules that permute the coordinate indices i, j, and k and the
corresponding components of the positions of the centers give equally legitimate rules for
locating the centers of the icosahedra in the fabric in the body frame of the chosen
icosahedron. For example, permuting i and j and the x and y-components of the above
rule gives

i

c(i, j.k)=(w + Lsino) 2 j+ (|i| + |k|mod 2)mod 2 |’
k

which also properly specifies the positions of the centers of the icosahedra. As before,
the index k£ numbers the levels. But, in this case, the index i numbers the rows, which run
parallel to the y-axis, and the index j numbers the icosahedra in the rows. Analogous to
the situation for the previous rule, the index j does not number the columns and, in
general, a triple of coordinate indices (i, j, k) will refer to different icosahedra under the
two different rules.

A slab constructed out of the orthogonal weave is characterized by the number of rows
N,, the number of columns N,, and the number of levels N; of icosahedra it contains.
Now, suppose that you want to construct a slab by filling a box with a fabric woven in the
orthogonal weave, where the rows, columns, and levels of the fabric align with the sides
of the box. First, define a triad of Cartesian coordinate axes aligned with the sides of the
box and with the origin at a corner of the box, which will be taken to be the primary
frame. To build a fabric to fill the box, you could start with either an icosahedron or a
gap in the rear (x = 0), leftmost (y = 0), bottom (z = 0) corner of the box (when looking
toward the origin from a point in the first octant). Furthermore, there are 2 distinct ways
to orient the icosahedra. The basis vectors of the body frames of the icosahedra could
point in the same directions as those of the primary frame or they could be rotated 90°
about any coordinate direction compared to the basis vectors of the primary frame. These
two orientations differ in the directions that the connectors extend from an edge relative
to the primary frame. Any other orientation is equivalent to one of the two already
described. If the basis vectors of the body frames of the icosahedra point in the directions
of the basis vectors of the primary frame and the leftmost, rear, bottom corner contains an
icosahedron, then the slab is said to be woven in the orthogonal weave, variant 0.
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Alternatively, if the icosahedra are oriented in the same way and the leftmost, rear,
bottom corner contains a gap rather than an icosahedron, then the slab is said to be woven
in the orthogonal weave, variant 1. If the icosahedra in variant O or variant 1 are rotated
90°, then the slab is said to be woven in the orthogonal weave, variant 2 or 3,
respectively. Correspondingly, for the icosahedra in variants O and 1, the quaternion that
specifies the initial rotation of the body frames relative to the primary frame is the
multiplicative identity

g,=(1,0,0,0)

whereas the initial rotation quaternion for variants 2 and 3 is

Hllustration 6: The Orthogonal Weave, Variant 0. The left image shows a 3x3x3 slab
from a point in front and to the left.

where I have chosen the z-axis as the axis of rotation.

If a slab is constructed in the orthogonal weave, variant 0, then the centers of the
icosahedra lie at the points

2i+ (j+kmod2)mod 2
J » (56)
k

c(i,j,k)=(w+ Lsino)

for
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i=0,1,,N+[(j+1-kmod2)mod2|(N mod2)—1;

7
j=0,1,---,Ny—1;k:0,1,---,NZ—1 7
where
N —N mod?2
N=— 2X , (58)

N
which is — without the fractional part. An alternative representation is

i
c(i,j.k)=(w+ Lsing) 2j+ (i+kmod2)mod?2 |
k
for
i=0,1,-,N -1;
j=01,--  N+[(i+1- kmodZ)modZ](NymodZ) -1;
k=0,1,-,N -1

where

N},—NymodZ
5 .

Either of these rules may be used to determine the locations of the centers in a slab

N

woven according to variant 0. Shifting the fabric in the top rule up one level replaces the
icosahedron at the origin with a gap and shows that the centers in a slab laid out in the
orthogonal weave, variant 1 lie at
2i+[j+ (k+1)mod2]|mod2
c(i,j, k)= (w+ Lsin0) j . (59)
k
for
i=0,1,,N+{[j+1—(k+1)mod2]|mod2}(N mod2)—1;
j=0,1,~--,Ny—1;k=O,1,~~-,NZ—1, (60)

where

N —N mod?2
N=—2 2 .
2

Aside from specifying the locations of the centers, these formulas allow the icosahedra in
a row, column, level, or slab to be counted. Tables 1, 2, 3, and 4 list the numbers of
icosahedra in the various parts of a slab for all of the variants.
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Variant Both j and k odd or even | One of j or k odd and the other even
1 1
Oor?2 E(NX-FNmedZ) i(NX—NxmodZ)
1 1
lor3 E(Nx_Nmedz) E(NerNxmodZ)

Table 1: Number of Icosahedra in a Column of a Slab Woven in the Orthogonal Weave (Here j is the
column number, which might not be the same as the coordinate index j, and k is the level number.)

Variant Both i and k odd or even | One of i or k odd and the other even
1 1
0or2 [V, + N mod2) [NV, =N mod2)
1 1
lor3 E(N},—NymodZ) E(N},-I—NymodZ)

Table 2: Number of Icosahedra in a Row of a Slab Woven in the Orthogonal Weave (Here i is the row

number, which might not be the same as the coordinate index i, and k is the level number.)

Variant Number of Icosahedra in Level k

Oor2 %[NXNVJF(—l)k*l NXNy)modZ}
1 k

lor3 E[NXNV+(—1) (NxNy)modZ}

Table 3: Number of Icosahedra in a Level of a Slab Woven in the Orthogonal Weave

Variant O or 2

Variant 1 or 3

l[N N N +(N NN )modz}
S [N N NN,

1

NN N ~(NN N |mod2|

Table 4: Total Number of Icosahedra in a Slab Woven in the Orthogonal Weave

Since the orthogonal weave as described according to the rule above is invariant under
mirror reflection about the x-z plane, any formula describing variant 0 is also true for
variant 2 if the x and y components; i and j; and N, and N, are swapped. This may also be
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seen algebraically as follows. Rotating the fabric 90° about the z-axis in the top rule for
variant 0 and reversing the direction of the index i demonstrates that the centers in a slab
laid out in variant 2 lie at
i
c(i,j.k)=(w+LsiN0)2 i 4 |-+ kmod2|mod2|
k
for
i=0,1,--N-1;
j=0,1,--- N+ (|1—-i- km0d2|m0d2)(Nymod2) -1,
k=0,1,-,N -1,
where, this time,

N —N mod?2
N=—1— .
2

It may easily be shown that
|-m + nlmod 2 = |m + n|mod 2
and
|m|mod 2 = |m + 2 n|mod 2,
for any integers m and n. Applying these identities to the above formula shows that the
centers of the icosahedra a slab woven in the orthogonal weave, variant 2 lie at the
points
i
c(i,j,k)=(w+LsiN0)|2 ;4 (i + kmod2)mod2| (61)
k
for
i=0,1,- N -1;
j=01,--  N+|[(i+1- kmodZ)modZ](NymodZ) -1, (62)
k=0, 1,---,NZ—1.
Notice that this is the same formula as the bottom formula describing the locations of the
centers for variant 0. In other words, the centers lie in the same locations for variants 0
and 2 of the orthogonal weave. This also means that slabs with the same dimensions in
variants 0 and 2 have the same numbers of icosahedra in their corresponding rows,
columns, and levels and the same total numbers of icosahedra. See Tables 1, 2, 3, and 4.

Similarly, the centers of the icosahedra are in the same positions for variants 1 and 3.
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Shifting the rule describing the locations of the centers in variant 2 yields a rule
describing the locations of the centers in a slab woven using variant 3. This shows that
the centers are located at
i
c(i, j.k)=(w+LsiNO) 2 ;4 [i+ (k+1)mod2]mod2| (63)
k
for
i=0,1,--,N -1;
j=01,--- N+{[i+1- (k+1)mod2]mod2}(Nvmod2) - 1; (64)
k=0,1,--,N 1 |
if the slab is laid out in the orthogonal weave, variant 3, where, again,

N —N mod?2

N = (65)

This is an alternative form for the positions of the centers of the icosahedra for variant 1.
As with variants O and 2, in slabs constructed in variants 1 and 3 with the same
dimensions, the locations of the centers; the numbers of icosahedra in corresponding
rows, columns, and levels; and the total numbers of icosahedra are the same. See Tables
1,2, 3, and 4.

Rather than using the 3 indices i, j, and & to label the icosahedra in a slab, it is also
possible to label the icosahedra using a single index ®. One common way of doing this
is through a lexicographic ordering. For example, if the icosahedra in a slab are laid out
in the orthogonal weave, variant 0, and the top rule is used to determine the locations of
the centers, then the index Q takes its lowest value at the rear, leftmost, bottom corner
and counts the icosahedra along the first (i.e. leftmost) column on the bottom, then the
second column on the bottom, and so forth until the entire level has been counted. The
icosahedra on each successive level are counted in the same manner until all of the
icosahedra in the slab have been counted. In this case, the lexicographic index  is
related to the coordinate indices i, j, and k via the formula

N N k+(N N kymod2 N j+(=1)%(N j)mod2
o=—— 2 + x + i,

2 2

where « starts at 0, just like i, j, and k. Similarly, under the rule specifying the locations

of the centers in a slab woven in the orthogonal weave, variant 1, the two types of

indices satisfy
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N Nk—(NN k)mod2 N j+(=1"Y(N j)mod2
oa=—" 2x . + — > - + 0.

For the rules written above that give the locations of the centers for the remaining two

variants, it is more convenient to define the lexicographic ordering slightly differently. In
these cases, the lexicographic index a is incremented along the rows of each level rather
than the columns. So, for the orthogonal weave, variant 2,
N N k+ (NN k)mod2  iN +(=1)(iN )mod?2
= —2 Xy + y y +
2 2
whereas, for the orthogonal weave, variant 3,
N N k—(NN kjmod2  iN +(=1)""(iN Jmod2
= 4+ Y
2 2

Notice that these formulas also pertain to alternative rules for specifying the locations of

x + J

the centers for variants 0 and 1, respectively. Correspondingly, the lexicographic
orderings given for variants O and 1 could be used for variants 2 and 3, respectively, if the
rules for locating the centers in variants O and 1 are used to describe variants 2 and 3
instead.

For the purposes of describing connections between icosahedra, it is useful to name the
edges where the connectors attach. In the orthogonal and bias weaves, the axes of the
body frame of an icosahedron pass through the edges where the connections attach. 1 will
call the edges that the positive and negative z-axes pass through the “up” and “down”
edges, respectively. The edges that the positive and negative x-axes pass through will be
called the “north” and “south” edges, respectively. And, the edges that the positive and
negative y-axes pass through will be called the “west” and “east” edges, respectively. As
I mentioned before, the orthogonal and bias weaves are fundamentally identical and the
connections within them are identical when seen from the perspective of the body frames
of the connected icosahedra. Up edges always connect to down edges and vice versa;
north edges always connect to south edges and vice versa; and west edges always connect
to east edges and vice versa. (A diagram would be nice.) The locations of the centers of
the icosahedra connected to a given icosahedron relative to the center of the given
icosahedron are listed in Table 5.
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Local Edge Remote Edge Location of Center of Remote Icosahedron
up down +Az, £Ax
down up -Az, +Ax
north south +Ax, £Ay
south north -Ax, £Ay
west east +Ay, £Az
east west -Ay, £Az

Table 5: Locations of Centers of (“Remote’ ) Icosahedra Connected to a Given (“Local” ) Icosahedron
Relative to its Center. Here Ax = Ay = Az =w+Lsing.

Local Remote Ac both k and j odd or |one of k or j odd and
Edge Edge even the other even
up down (W,0,w) (i, j,k+1) (i+1,,k+1)
up down (—w,0,wW) (i—-1,j,k+1) (i,j,k+1)
west east (0,W, W) (i, j+1,k+1) (i, j+1,k+1)
east west (0,—W,W) (i, j—1,k+1) (i, j—1,k+1)
down up (W,0,—W) (i, j,k—1) (i+1,j,k—1)
down up (—Ww,0,—W) (i—-1,j,k—1) (i, j,k—1)
west east (0,W,—W) (i, j+1,k—1) (i, j+1,k—1)
east west (0,—W,—W) (i, j—1,k—1) (i, j—1,k—1)
north south (W,w,0) (i, j+1,k) (i+1,j+1,k)
south north (—w,w,0) (i—1,j+1,k) (i, j+1,k)
north south (W,—w,0) (i, j—1,k) (i+1,j—-1,k)
south north (-W,—w,0) (i—-1,j-1,k) (i, j—1,k)

Table 6: Possible connections in the orthogonal weave, variant 0. This table lists the coordinate indices of

"remote" icosahedra that are connected to the "local" icosahedron with coordinate indices (i, j, k),

provided that they are present in the fabric. Here k is the level containing the local icosahedron, j is the

column that it's in, and A ¢ is the relative position of the center of the remote icosahedron, where

W =w + LSIiNO . This assumes that the coordinate indices are defined according to the “top” rule

specifying the locations of the centers of the icosahedra in the slab.
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Local Remote Ac both k and j odd or |one of k or j odd and
Edge Edge even the other even
up down (W,0,W) (i+1,j,k+1) (i,j,k+1)

up down (—w,0,w) (i,j,k+1) (i—1,j,k+1)
west east (0,W, W) (i, j+1,k+1) (i, j+1,k+1)
east west (0,—W,WwW) (i, j—1,k+1) (i, j—1,k+1)
down up (W,0,-W) (i+1,j,k—1) (i, j,k—1)
down up (—w,0,—W) (i,j,k—1) (i—-1,j,k—1)
west east (0,W,—-Ww) (i, j+1,k—1) (i, j+1,k—1)
east west (0,-W,-Ww) (i, j—1,k—1) (i, j—1,k—1)
north south (W,w,0) (i+1,j+1,k) (i, j+1,k)
south north (-wW,w,0) (i, j+1,k) (i—1,j+1,k)
north south (W,—w,0) (i+1,j-1,k) (i, j—1,k)
south north (-W,-w,0) (i, j—1,k) (i—-1,j-1,k)

Table 7: Possible connections in the orthogonal weave, variant 1. This table lists the coordinate indices of

"remote" icosahedra that are connected to the "local" icosahedron with coordinate indices (i, j, k),

provided that they are present in the fabric. Here k is the level containing the local icosahedron, j is the

column that it's in, and A ¢ is the relative position of the center of the remote icosahedron, where

W =w + LSIin@ . This assumes that the coordinate indices are defined according to the rule

specifying the locations of the centers of the icosahedra in the slab.
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Local Remote Ac both k and i odd or |one of k or i odd and
Edge Edge even the other even
up down (0,W, W) (i, j,k+1) (i, j+1,k+1)
up down (0,—wW,Ww) (i, j—1,k+1) (i,j,k+1)
east west (W,0,Ww) (i+1,j,k+1) (i+1,j,k+1)
west east (—wW,0,wW) (i—-1,j,k+1) (i—-1,j,k+1)
down up (0,w,—W) (i, j,k—1) (i, j+1,k—1)
down up (0,—W,—Ww) (i, j—1,k—1) (i, j,k—1)
east west (W,0,—-W) (i+1,j,k—1) (i+1,j,k—1)
west east (—w,0,—W) (i—-1,j,k—1) (i—1,j,k—1)
north south (W, w,0) (i+1,/,k) (i+1,j+1,k)
south north (W,—w,0) (i+1,j-1,k) (i+1,/,k)
north south (—w,w,0) (i—1,j,k) (i—-1,j+1,k)
south north (—w,—w,0) (i-1,j-1,k) (i—1,j,k)

Table 8: Possible connections in the orthogonal weave, variant 2. This table lists the coordinate indices of

"remote" icosahedra that are connected to the "local" icosahedron with coordinate indices (i, j, k),

provided that they are present in the fabric. Here k is the level containing the local icosahedron, i is the

row that it's in, and A ¢ is the relative position of the center of the remote icosahedron, where

W =w + LSIiNO . This assumes that the coordinate indices are defined according to the rule

specifying the locations of the centers of the icosahedra in the slab.
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Local Remote Ac both k and i odd or |one of k or i odd and
Edge Edge even the other even
up down (0,wW, W) (i, j+1,k+1) (i,7,k+1)

up down (0,—W,WwW) (i,7,k+1) (i, j—1,k+1)
east west (W,0,Ww) (i+1,j,k+1) (i+1,j,k+1)
west east (—wW,0,wW) (i—-1,j,k+1) (i—-1,j,k+1)
down up (0,w,—W) (i, j+1,k—1) (i, j,k—1)
down up (0,—W,—Ww) (i,j,k—1) (i, j—1,k—1)
east west (W,0,—-W) (i+1,j,k—1) (i+1,j,k—1)
west east (—w,0,—W) (i—-1,j,k—1) (i—1,j,k—1)
north south (W, w,0) (i+1,j+1,k) (i+1, ], k)
south north (W,—w,0) (i+1,/,k) (i+1,j-1,k)
north south (—w,w,0) (i—1,j+1,k) (i—1,j,k)
south north (—w,—w,0) (i-1,j,k) (i—-1,j-1,k)

Table 9: Possible connections in the orthogonal weave, variant 3. This table lists the coordinate indices of

"remote" icosahedra that are connected to the "local" icosahedron with coordinate indices (i, j, k),

provided that they are present in the fabric. Here k is the level containing the local icosahedron, i is the

row that it's in, and A ¢ is the relative position of the center of the remote icosahedron, where

W =w + LSIiNO . This assumes that the coordinate indices are defined according to the rule

specifying the locations of the centers of the icosahedra in the slab.

Determining how many connections there are in a slab woven in a particular variant of
the orthogonal weave requires determining which possible connected neighbors of each
icosahedron in the slab are actually present in the slab.
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Variant Number of Connections in a Slab

(N -1) %(Ny—NymodZ)[S +12(N—1) + 6(N, mod2)]

+4(N mod2) — 3+ [6(Nymod2) - 4}(1\/—1)

+[3(Nym0d2) — 2}(Nxmod2)

Oorl
+(N,~1)[1+2(N-1)+ N mod2|
where
N=Z(N ~N mod2|
2
(N -1) %(Nx—NxmodZ)[S +12(N~-1)+6(N mod2)
+4(N mod2) - 3 + {6(Nxmod2) - 4](N—1)
+[3(N mod2) — 2}(Nvm0d2)

2or3 x y

+ (Nx—l)[l +2(N=1)+ Nymodz}

where
Nzl(N -N modz)
2 y y

Table 10: Numbers of Connections in Slabs Woven from the Orthogonal Weave

The depth of a slab woven in any variant of the orthogonal weave in the x, y, and z
directions of the body frame of any icosahedron in the slab, respectively, are

D =w+N ~1|(w+Lsino),

Dv:w+(Ny—1)(w+Lsin 0),

DZ:w+(NZ—1)(w+Lsin 0),
where w=2 T a is the width of the circumscribing cube. Correspondingly, the numbers
of icosahedra in the coordinate directions, N,, N,, and N., that best fit a cuboid with edge
lengths W,, W,, and W are

W —w
1+y—.
w4+ LSIno

WX—W

w
1+Z—.
w+LsIno

N =1+

X

, N =

y

, N_=

z >

w+Lsino
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where the square brackets mean “the largest integer smaller than the quantity they
contain.”

The Bias Weave

To form the bias weave, the orthogonal weave is rotated so that opposite faces of the
icosahedra point directly up and directly down. This rotates and tilts the circumscribing
cubes and slants the restoring forces that the connecting elements exert. It also reorients
the spaces in the material so that they are no longer directly above, below, or to the sides
of the icosahedra.

Refer to the “bias orientation” rather than the “bias weave”.

Figure 7: An icosahedron and the 12 icosahedra that

connect to it in the bias weave
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Appendix

This appendix contains a listing of the Maple code used to calculate the volume, center of
mass, and moment of inertia tensor for an icosahedral shell together with some of its
output.

»  read CiWViMy Documentsih\icosahedronhicosabhedron.txt’;

V_totel 1= 10a ¥ + %} a5 - 106° - ?b%’ﬁ

m—tﬂtﬂi :={:}
W-t'ﬂtﬂi :={}
zm_tﬂtﬂi:=ﬂ
L - 5 " .
Fao_totat 1w -8 272+ TE ~3+6a” +a /b
: (-1 + 5] {1 ++5)
16 p{-Ta ¥+ 76 - 3+5a7" +354°)
Fyy_total i= ——
ey -Lo 3 (-1 + 451 {1 + +/5)
L - 5 n .
For_totad i — 20 2=T2 "+ Th 350 435
: {(-1++5){1 ++5)
IIy—chIi :={}
fzz _totol :={}
Fyz _total := 0
[% o o]
& 0 %l
bl e 18 P(=T2® +75° — 345 07% +34/54%)
nl I= — —
: {(-14+/5]{1 ++/5)
Esystem 1= 2 %~ 2, (0. 0. 1), (o L0 (1D 0)))
________________________ €11 OUEPUE ~-wnmemmemmemmemmemmemmemmee
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————————————————————————————— begin Maple listing --------------=--====--=o—--

# This script calculates properties of a concentric icosahedral shell of

# uniform density rho, where the length of an edge of the outer icosahedral
# surface is a and the length of an edge of the inner icosahedral surface
#1is b. The coordinate system used has its origin at the center of the

# shell with the axes lying in the centers of the 3 perpendicular golden
# rectangles formed by 6 edges of the icosahedron. See the Wikipedia
# entry for "icosahedron” (http://en.wikipedia.org/wiki/Icosahedron) for
# a picture of these rectangles. The parameter tau is the golden ratio
#= (1 + sqrt(5))/2. (See http://en.wikipedia.org/wiki/Golden_ratio

# for more information.)

#

# The script calculates the volume of the shell V, which is the volume

# of the outer icosahedron minus the volume of the inner icosahedron,
# and the center of mass (xcm, ycm, zcm), which lies at the center of

# the shell, as checks to indicate whether the integrations are being

# performed correctly. But the purpose of the script is to calculate

# the components of the moment of inertia tensor I and find the principal
# axes for the shell.

#

# Mark A. Martin

# 6/2/2006

with(linalg):
assume(a>0):
# List the lists of vertices specifying the faces.

Faces := |
([0, -a, tau*a],
([0, -a, tau*a],

[0,a,tau*a], [-tau*a,0,a]], # 1
[
[[O, -a, tau*a], [
[
[

tau*a,0,a], [O,atau*a]], # 2
tau*a,0,a], [-a,-tau*a,0]], # 3
a,-tau*a,0], [a,-tau*a,0]], # 4
a,-tau*a,0], [tau*a0,a]], # 5
-a,tau*a,0], [-tau*a,0,a]], # 6
a,tau*a,0], [-atau*a,0]], # 7

[[O, -a, tau*a], [-
[[O, -a, tau*a],
[[O, a, tau*a],
[[O, a, tau*a],

[
[
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[[O, a, tau*a], [tau*a,0,a],

[[-taU*ao 07 a] ’

tau*a, 0, -aj,

[-
[[-tau*a, O, a], [-a, tau*a, 0],

[[tau*a, O, a], |
[[tau*a, 0, a], |

a, -tau*a, 0],
tau*a, 0, -a],

[[O, -a, -tau*a], [-a,-tau*a,0],
[[O, -a, -tau*a], [a,-tau*a,0],
[[O, -a, -tau*a], [tau*a,0,-a],
[[O, a, -tau*a], [-tau*a,0,-a],
[[O, a, -tau*a], [-a,tau*a,0],
[[0, a, -tau*a], [a,tau*a,0],
[[O, -a, -tau*a], [-tau*a,0,-a],
[[0, a, -tau*a], [tau*a,0,-a],

1

# Form a set of the lists of vertices specifying the faces to check that

# they are all unique.

Set_of_Faces := {
{10, -a, tau*a],
{10, -a, tau*a],
{10, -a, tau*a],
{10, -a, tau*a],
{[0, -a, tau*a],
{10, a, tau*a],
{[0, a, tau*a],
{[0, a, tau*a],

[0,a,tau*a],
[0,a,tau*a],
[-tau*a,0,a],
[-a,-tau*a,0],
[a,-tau*a,0],
[-tau*a,0,a],
[-a,tau*a,0],
[a,tau*a,0],

[a,tau*a,0]], # 8

[-a, -tau*a, O]], # 9
[-tau*a, O, -a]], # 10
[tau*a, O, -a]], # 11
[a, tau*a, 0]], # 12
[-tau*a,0,-a]], #13
[-a,-tau*a,0]], # 14
[a,-tau*a,0]], # 15
[-a,tau*a,0]], # 16
[a,tau*a,0]], # 17
[tau*a,0,-a]], # 18
[0,a,-tau*a]], # 19
[0,-a,-tau*a]] # 20

[-tau*a,0,a]}, # 1
[tau*a,0,a]}, # 2
[-a,-tau*a,0]}, # 3
[a,-tau*a,0]}, # 4
[tau*a,0,a]}, # 5
[-a,tau*a,0]}, # 6
[a,tau*a,0]}, # 7
[tau*a,0,a]}, # 8

{[-tau*a, 0, a], [-a, -tau*a, 0], [-tau*a, 0, -a]}, # 9
{[-tau*a, 0, a], [-a, tau*a, 0], [-tau*a, 0, -a]}, # 10

{[tau*a, 0, a],
{[tau*a, O, a],

{10, -a, -tau*a], [-tau*a,0,-a],
{10, -a, -tau*a], [-a,-tau*a,0],

{10, -a, -tau*a],
{10, a, -tau*a],
{10, a, -tau*a],
{10, a, -tau*a],

[a, -tau*a, O],

[a, tau*a, 0],

[a,-tau*a,0],

[-tau*a,0,-a],
[-a,tau*a,0],

[a,tau*a,0],

[tau*a, 0, -a]}, # 11
[tau*a, 0, -a]}, # 12
[-a,-tau*a,0]}, #13
[a,-tau*a,0]}, # 14
[tau*a,0,-a]}, # 15
[-a,tau*a,0]}, # 16
[a,tau*a,0]}, #17
[tau*a,0,-a]}, # 18
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{[0, -a, -tau*a], [0,a,-tau*a], [-tau*a,0,-a]}, # 19
{10, a, -tau*a], [0,-a,-tau*a], [tau*a,0,-a]}

}:
NF :=nops(Set_of_Faces);

if NF <> 20 then

# Print an error message and terminate execution.
ERROR( There must be 20 unique faces!");

fi;

Lengths := matrix(NF,3):
scale_factor := vector(NF):
\'% := vector(NF):
xcm = vector(NF):
ycm = vector(NF):
zcm = vector(NF):
Ixx :=vector(NF):

Iyy :=vector(NF):

Izz .= vector(NF):

Ixy vector(INF):

Ixz = vector(NF):

Iyz :=vector(NF):

V_total :=0:

xcm_total := 0:
ycm_total :=0:
zcm_total := 0:

Ixx_total := 0:
Iyy_total :=0:
Izz_total :=0:
Ixy_total :=0:
Ixz_total :=0:
Iyz_total :=0:

for 1 from 1 to NF do
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P := Faces|[i];
# Construct the basis vectors for integration.

vl := vector(3, P[1]);
v2 := vector(3, P[2] - P[1]);
v3 := vector(3, P[3] - P[1]);

# Check the lengths of the edges of the outer face to make sure
# that they are all 2a.

tau = (1 + sqrt(5))/2:

Lengths[i,1] := simplify(sqrt(dotprod(v2,v2)));

Lengths[i,2] := simplify(sqrt(dotprod(v3,v3)));

Lengthsl[i,3] := simplify(sqrt(dotprod(v3-v2,v3-v2)));

# Construct the transformation matrix.

# The vectors v1, v2, and v3 must form a right-handed triad for
# the scale factor to have the correct sign. I chose the ordering
# of the points in the faces of the icosahedron (as listed in

# Faces and Sets_of_Faces) by hand to make sure that this was true.
tau := 'tau":

scale_factor[i] := simplify(dotprod(crossprod(v1,v2),v3));

A :=augment(vl,augment(v2,v3)):

# Express the position vector as a function of the face coordinates
# and retrieve its cartesian coordinates.

r := multiply(A, [lambda_1, lambda_2, lambda_3]):

r[1];
r[2];
r[3];

N < X
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# Calculate volume (as a check).

V[i] := simplify(int(int(int(scale_factor[i],
lambda_3=0..(lambda_1 - lambda_2)),
lambda_2=0..]lambda_1),
lambda_1=(b/a)..1));

V_total := V_total + V[i]:

# Calculate the coordinates of the center of mass (also as a check).
# See Fowles p 187.

xem([i] := simplify(int(int(int(x*scale_factor[i],
lambda_3=0..(lambda_1 - lambda_2)),
lambda_2=0..lambda_1),
lambda_1=(b/a)..1));

xcm_total := xcm_total + xem[i]:

yem[i] := simplify(int(int(int(y*scale_factorl[i],
lambda_3=0..(lambda_1 - lambda_2)),
lambda_2=0..]lambda_1),
lambda_1=(b/a)..1));

ycm_total := ycm_total + yem[i]:

zem[i] := simplify(int(int(int(z*scale_factor[i],
lambda_3=0..(lambda_1 - lambda_2)),
lambda_2=0..]lambda_1),
lambda_1=(b/a)..1));

zcm_total := zcm_total + zcm[i]:

# Calculate the components of the moment of inertia tensor.
# See Fowles p 219.
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Ixx[i] := int(int(int((y*y + z*z)*rho*scale_factor[i],
lambda_3=0..(lambda_1 - lambda_2)),
lambda_2=0..lambda_1),
lambda_1=(b/a)..1):

Iyy[i] := int(int(int((x*x + z*z)*rho*scale_factor[i],
lambda_3=0..(lambda_1 - lambda_2)),
lambda_2=0..lambda_1),
lambda_1=(b/a)..1):

Izz[i] := int(int(int((x*x + y*y)*rho*scale_factor[i],
lambda_3=0..(lambda_1 - lambda_2)),
lambda_2=0..]Jambda_1),
lambda_1=(b/a)..1):

Ixy[i] := int(int(int(-x *y*rho*scale_factor[i],
lambda_3=0..(Iambda_1 - lambda_2)),
lambda_2=0..]Jambda_1),
lambda_1=(b/a)..1):

Ixz[1] := int(int(int(-x*z*rho*scale_factor[i],
lambda_3=0..(Iambda_1 - lambda_2)),
lambda_2=0..lambda_1),
lambda_1=(b/a)..1):

Iyz[i] := int(int(int(-y*z*rho*scale_factor[i],
lambda_3=0..(lambda_1 - lambda_2)),
lambda_2=0..lambda_1),
lambda_1=(b/a)..1):

tau = (1 + sqrt(5))/2:

Ixx[1] := simplify(eval(Ixx[i]));
lyy[i] := simplify(eval(lyy[i]));
Izz[i] := simplify(eval(Izz[i]));
Ixy[i] :
Ixz[i] := simplify(eval(Ixz[i]));

simplify(eval(Ixy[i]));
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Iyz[i] := simplify(eval(lyz[i]));

Ixx_total := Ixx_total + Ixx[i]:
Iyy_total :=Iyy_total + Iyy/[i]:
Izz_total := Izz_total + Izz[i]:

Ixy_total := Ixy_total + Ixy[i]:
Ixz_total := Ixz_total + Ixz[i]:
Iyz_total :=lyz_total + Lyz[i]:

tau := 'tau":
od;
tau = (1 + sqrt(5))/2:

V_total := simplify(V_total);
xcm_total := simplify(xcm_total);
ycm_total := simplify(ycm_total);
zcm_total := simplify(zcm_total);
Ixx_total := simplify(Ixx_total);
Iyy_total := simplify(lyy_total);
1zz_total := simplify(Izz_total);
Ixy_total := simplify(Ixy_total);
Ixz_total := simplify(Ixz_total);
Iyz_total := simplify(Iyz_total);

Inertia := matrix(3,3,[[Ixx_total, Ixy_total, Ixz_total],
[Ixy_total, Iyy_total, Iyz_total],

[Ixz_total, Iyz_total, Izz_total]]);

Esystem := eigenvects(Inertia);
————————————————————————————— end Maple listing --------------=--===-=mmom—-
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